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Molecular fingerprints, like Extended-Connectivity Fingerprints (ECFP), are
widely used because they are simple, interpretable, and efficient, encoding
molecules into fixed-length bit vectors based on predefined structural features. In
ADMET property prediction tasks fingerprints are still the state-of-the-art when
combined with traditional machine learning methods like XGBoost or Random
Forest. In contrast, neural network embeddings are dense, high-dimensional
vectors learned directly from data using models like GraphConv, Chemprop,
MolBERT, ChemBERTa, MolGPT, Graphformer and CHEESE. These models,
trained on millions of drug-like molecules represented as SMILES, graphs, or
3D point clouds, capture continuous and context-dependent molecular features,
enabling tasks such as property prediction, molecular similarity, and generative
design. The rise of neural network-based representations has raised an important
question: Do AI embeddings offer advantages over fingerprints?

The Performance Paradox
Here’s the catch: in many standard predictive tasks, neural network embeddings
do not necessarily outperform fingerprints. Benchmarks from the Therapeutic
Data Commons (TDC), which include datasets for properties like bioavailability,
lipophilicity, hERG toxicity, and half-life, reveal a surprising trend. As illustrated
in the pie chart below, the majority of state-of-the-art (SOTA) results are
achieved using “old-school” gradient-boosted trees (e.g., Random Forest or
XGBoost) with molecular fingerprints. Only one in four datasets sees SOTA
performance from more advanced architectures like Graph Neural Networks
(GNNs) or Transformers.

This paradox raises a question: > If Neural Network or Transformer Models are so
much larger and computationally powerful while not outperforming fingerprints
in simple prediction tasks, what are their advantages?
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A pie chart showing SOTA results on the TDC ADMET benchmark, indicating
which model types achieved the best performance. All the boosted trees models
used fingerprints, boosted trees + GNN means it is an ensemble model.

Neural Networks are Superior on Unstructured Data
Traditional algorithms like boosted trees perform exceptionally well on struc-
tured data, where relationships and patterns are well-defined and features are
engineered. However, they falter on unstructured data, where modalities are
diverse and relationships more complex. Neural networks excel in these cases,
learning directly from unstructured or qualitative data such as images, audio, or
natural language.

Yet in chemistry, some modalities are fairly structured. Representations like
2D molecular graphs, SMILES strings or fingerprints (which encode subgraph
patterns) are discrete and inherently systematic, which is why traditional algo-
rithms often perform as well—if not better—than neural networks, especially on
small datasets.

On structured modalities, particularly with small datasets, neural
networks offer no inherent advantage over traditional boosted trees
paired with binary fingerprints. This trend is clearly reflected in the
TDC Benchmark results, where simple approaches often outperform
fancy AI methods.

However, when it comes to continuous and unstructured data—especially in the
context of large datasets—neural networks reveal their true potential. These are
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domains where crafting exact equations or simulations is infeasible due to the
complexity of the data. Neural models can uncover patterns and relationships
that are otherwise hidden, pushing the boundaries of discovery. Examples
include learning from 3D molecular shapes, electrostatics, or solving
problems such as protein folding, conformer prediction, partial charge
prediction and docking.

Some of these applications, like protein folding, have already led to Nobel Prize
breakthroughs, as seen with AlphaFold. Others, like docking and conformer
generation, hold significant promise but are currently constrained by dataset
size and the need for better benchmarks to avoid overfitting.

Neural networks shine in unstructured or continuous modalities,
such as 3D molecular shapes, electrostatics and large-scale datasets.
Think of protein folding, conformer generation, or docking. In these
domains, their ability to learn intricate, non-linear relationships di-
rectly from data—and even generate entirely new molecules—enables
breakthroughs that traditional approaches cannot match.

A figure with Alphafold success in CASP visible on a bar graph (left) and example
of protein tertiary structure predictions by it closely matching experimental
results.

Smooth Latent Spaces: A Key Advantage
One of the most compelling strengths of neural embeddings lies in their ability
to create smooth latent spaces, where similar inputs can be interpolated
naturally. This feature underpins many modern generative models, such as VAEs,
GANs, and diffusion models, and facilitates the continuous optimization of
molecular properties. Moreover, it gives interpretability to their otherwise
black-box nature. Discrete molecular representations, like SMILES strings or
molecular graphs, can be transformed into continuous latent spaces, enabling
seamless navigation and manipulation through mathematical operations. Selected
points in this latent space can then be decoded back into molecular structures,
making this approach invaluable for tasks like molecular design and property
prediction.
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ChemVAE is a generative variational autoencoder from Goméz-Bombarelli et.
al. which is able to continuously optimize properties of molecules in a latent
space.

In these latent spaces, molecular similarity can be computed efficiently using
simple metrics like Euclidean Distance or Cosine Similarity between vec-
tors. These operations are highly optimized for GPU acceleration, allowing
tools like CHEESE [citation] to perform clustering and searches on billion-scale
chemical spaces with remarkable speed and efficiency. For example, CHEESE
first identifies the most similar cluster by comparing centroid vectors and then
refines the search within the cluster, achieving significant performance gains over
traditional methods.

In contrast, traditional approaches face severe limitations at scale. For instance,
while ROCS without GPU acceleration would take 50 years of CPU time to
do shape-similarity screening on Enamine-REAL (5.5B database), CHEESE
takes only 6 seconds for the same task by efficiently by leveraging the inherent
advantages of its neural embedding latent space. Similarly, while clustering
methods relying on Tanimoto similarity (e.g., Taylor-Butina) are computationally
prohibitive on large datasets and would require a supercomputer to operate on
such a large scale, CHEESE accomplishes billion-scale molecular clustering with
commodity hardware.

A common criticism of neural networks is their perceived “black box”
nature. However, neural latent spaces can be visualized, interpreted,
and mapped back to the original molecular representations. Tools
like CHEESE Explorer make this process intuitive, ensuring that
neural embeddings are both practical and interpretable.
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CHEESE Explorer: a Visualisation app for latent spaces of chemical databases

Embeddings as “Inceptions”
To understand what neural embeddings bring to the table, it’s helpful to consider
why neural representations often surpass traditional approaches in other fields.
A compelling example comes from computer vision, where convolutional neural
networks (CNNs) have revolutionized image recognition. Initially, handcrafted
features like shape matching or Fourier coefficients dominated, but they were
eventually outpaced by neural approaches.
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A depiction of feature maps in a convolutional neural network, progressing from
low-level features (e.g., edges) to high-level abstractions (e.g., shapes or objects).
CNN learns these features by itself on a face-recognition task.

This transformation occurred because capturing all possible image modalities
manually is nearly impossible. Neural networks, like humans, can learn these
modalities automatically from data. Consider the problem of recognizing a cat
in an arbitrary image: defining an exhaustive set of equations or handcrafted
features to account for every possible pose, background, or lighting condition is
impractical. Neural networks overcome this challenge by learning directly from
data, producing representations that generalize across scenarios.

Inception Distance
Neural embeddings can be likened to “Inceptions” in that they provide perceptual
representation of data, allowing comparisons at a higher semantic level. Building
on this analogy, the “distance” or distribution shift between embeddings can
be measured using methods inspired by computer vision, such as the Fréchet
Inception Distance (FID). FID, which derives its name from a Convolutional
Neural Network (CNN) called Inception, is widely used to evaluate the quality
of generated images. By analyzing embeddings rather than raw pixels, FID
captures semantic differences, distinguishing visually similar but meaningfully
different images (e.g., those with slight shifts, rotations, or added noise). This
makes FID a robust measure for assessing the “realness” of images generated by
models.
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Figure showing various deformations of an image (noise, blur, mask, vortex, salt
and pepper or collage) and corresponding increase in Fréchet Inception Distance.

In the molecular domain, the Fréchet ChemNet Distance (FCD) adapts this
concept to compare distributions of molecular data. FCD evaluates how closely
the distribution of molecules generated by a model matches that of a reference
dataset, such as ChEMBL, PubChem, or ZINC, by leveraging the activations of a
pre-trained neural network. Instead of relying on predefined rules (e.g., Lipinski’s
Rule of Five), FCD uses the learned patterns in high-dimensional latent space
to assess “drug-likeness” or other chemical properties. This approach excels at
detecting subtle yet meaningful differences between distributions.

Graphical Abstract show-
ing distributions of reference database molecules vs molecules by generative models.
Valid, yet unplausible or undruglike molecules will have higher FCD from the
reference database.
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CHEESE Chemical Embeddings
CHEESE (Chemical Embeddings Search Engine) leverages neural embeddings
to perform advanced similarity searches, prioritizing molecules that align closely
with the query not only in 2D structure but also in 3D shape and electrostatic
properties. While any trained neural network learns an “inception distance”
sui generis, this does not inherently guarantee chemical relevance in applications
like virtual screening. CHEESE goes a step further by optimizing its loss
function to emphasize physicochemically important metrics such as 3D shape
and electrostatic similarity, ensuring that retrieved molecules are both intuitively
relevant and chemically meaningful.

CHEESE accepts pairs of molecules and an encoder with shared weights processes
maps them into a continuous vector space. The encoder maintains differen-
tiability throughout the encoding process and computes the Euclidean distance
between the embeddings of the two molecules. The similarity preserving loss
function ensures that the embeddings preserve molecular similarities in the
induced euclidean vector space, penalizing deviations from isometry.

This targeted optimization delivers a significant improvement in virtual screening
performance, as demonstrated on the LIT-PCBA benchmark, where CHEESE
consistently outperformed traditional approaches in recovering active hits.
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Evaluation of enrichment factor on a LIT-PCBA Benchmark (a benchmark based
on PubChem Bioassays measuring a success rate of retrieving experimentally
measured active molecules).

3D Shape Similarity

Traditional fingerprints, such as Morgan fingerprints, often fall short when
molecular similarity relies heavily on 3D conformation rather than substructural
patterns. Neural networks, particularly those designed for 3D molecular data,
excel in capturing these spatial relationships, making them invaluable for tasks
requiring precise shape and electrostatic comparisons.

For instance, in a ChEMBL database search for a small heterocyclic molecule,
Morgan fingerprints retrieved molecules with significantly different scaffolds, ring
counts, or molecular weights. In contrast, CHEESE embeddings accurately pri-
oritized results based on 3D shape similarity, offering chemically and biologically
relevant matches.
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Search results on Chembl database when searching a small heterocyclic molecule
with morgan fingerprints. Depicted are most tanimoto-similar molecules to
fingerprint of the query. Results lack consistency in scaffold shape and molecular
weight.

Search results on Chembl database when searching a small heterocyclic molecule
with CHEESE Shapesim Embeddings. Depicted are most cosine-similar molecules
to the embedding of the query. Results show closer matches based on 3D shape
and molecular relevance.

Electrostatic Similarity

Beyond 3D shape, CHEESE embeddings shine in their ability to compare
molecules based on electrostatic properties, a key determinant in molecular
interactions. Traditional fingerprints reduce molecular information to fixed-length
binary vectors, which are inherently limited in representing continuous
features like electrostatics. In contrast, CHEESE uses continuous embedding
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vectors, enabling more nuanced and contextually relevant comparisons.

Comparison of similarity matrices: Tanimoto similarity for fingerprints (left)
versus cosine similarity for CHEESE embeddings (right).

Consider the task of identifying molecules with similar electrostatic distributions
in a large dataset, such as PubChem. Fingerprint-based methods often retrieve
results that vary widely in electrostatic profiles, as they cannot directly encode or
prioritize these properties. CHEESE, however, preserves electrostatic information
in its embeddings. This enables it to consistently prioritize molecules with similar
charge distributions and interaction potentials, even when structural
similarities are weak.

Fingerprints may retrieve molecules with electrostatically similar
fragments or motifs, however they cannot capture the overal “big
picture”. Tanimoto similarity is not always intuitive: parts of the
found molecules may contain the same chemical groups, but as a
whole it may be chemically entirely different molecule.

For instance, when searching for molecules with a sulfonamide functional group,
Morgan fingerprints produced inconsistent results: some retrieved molecules had
one sulfonamide group, others had three, and some lacked it entirely. CHEESE
embeddings, on the other hand, correctly identified the electrostatically signifi-
cant role of the sulfonamide group, prioritizing molecules with similar charge
distributions and interaction profiles.
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Search results on Chembl database when searching a molecule with sulfonamides
with morgan fingerprints. Depicted are most tanimoto-similar molecules to
fingerprint of the query. Results vary in electrostatic similarity.

Search results on Chembl database when searching a molecule with sulfonamides
with CHEESE Espsim Embeddings. Depicted are most cosine-similar molecules
to the embedding of the query. Results show improved alignment in electrostatic
profiles.

Conclusion: Choosing the Right Tool
Neural network embeddings and traditional fingerprints each bring unique
strengths to the table, and their utility depends on the specific task at hand.
Fingerprints excel in scenarios where simplicity, interpretability, and computa-
tional efficiency are paramount—particularly for structured data and small-scale
predictive tasks. On the other hand, neural embeddings shine when tackling
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unstructured or continuous molecular data, enabling breakthroughs in areas
such as 3D molecular shape comparison, electrostatic similarity, and generative
modeling.

The smooth latent spaces offered by embeddings open up new possibilities
for molecular discovery, from generating novel compounds to finding nuanced
relationships that fingerprints might miss. Tools like CHEESE exemplify how
embeddings can redefine workflows in drug design and materials science, providing
chemically meaningful insights that align with experimental observations.

Ultimately, rather than viewing these representations as competitors, it’s more
productive to see them as complementary tools. As datasets grow in size
and complexity, and as AI models improve, the lines between structured and
unstructured tasks will blur further, making the choice of representation less
about technical limitations and more about aligning with the goals of the research.
For chemists and data scientists alike, the future lies in leveraging the best of
both worlds to accelerate discovery.
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